Intrinsic and force-generated cooperativity in a theory of DNA-bending proteins.

نویسندگان

  • Houyin Zhang
  • John F Marko
چکیده

We study a statistical-mechanical model of the binding of DNA-bending proteins to the double helix including applied tension and binding cooperativity effects. Intrinsic cooperativity of binding sharpens force-extension curves and causes enhancement of fluctuation of extension and protein occupation. This model also allows us to estimate the intrinsic cooperativity in experiments by measuring the peak value of the slope of extension versus chemical-potential curves. This analysis suggests the presence of force-dependent cooperativity even in the absence of explicit intrinsic (energetic) cooperativity. To further understand this effect, we analyze a model with a pair of bends at variable spacing to obtain a spacing-dependent free energy of interaction between the two proteins. We find that the interaction is always attractive and has an exponential decay as a function of bend spacing. For forces greater than k(B)T/A, where A is the persistence length, the interaction decay length is approximately [k(B)TA/(4f)](1/2) in accord with theoretical expectations. However, the force dependence of the strength of the interaction is more complex. For short interprotein separations, the interaction strength saturates at a level which varies roughly as f(1/2), while at longer separations the amplitude of the exponential decay increases faster than linearly with force. Our results can be applied to single molecule experiments to measure the cooperativity between DNA-bending proteins or between other molecules which deform the semiflexible polymer with which they bind. Force-mediated interaction of DNA-bending proteins suggests a mechanism whereby tension in DNA in vivo could alter the distribution of proteins bound along DNA, causing chromosome refolding, or changes in gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: Dynamics of Flagellar Force Generated by A Hyperactivated Spermatozoon

Background: To clarify the mechanism of sperm penetration through the zona pellucida, the flagellar force generated by a hyperactivated spermatozoon was evaluated using the resistive force theory applied to the hyperactivated flagellar waves that were obtained from the mammalian spermatozoa. Materials and Methods: The hydrodynamic calculation of the flagellar force of the activated (non-hyperac...

متن کامل

Cooperativity in biological systems

Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...

متن کامل

Solvent Effect on Aquaporin4

Aquaporins are integral membrane proteins from a larger family of major intrinsic proteins that formpores in the membrane of biological cells. Aquaporins form tetramers in the cell membrane with eachmonomer acting as a water channel.In this research, the AQP4 tetramer was modeled from its PDBstructure file, then, we have performed the intraction of aquaporin4 in different temperatures (298k,300...

متن کامل

Simple Two Variable Refined Theory for Shear Deformable Isotropic Rectangular Beams

In this paper, a displacement-based, variationally consistent, two variable refined theory for shear deformable beams is presented. The beam is assumed to be of linearly elastic, homogeneous, isotropic material and has a uniform rectangular cross-section. In this theory, the beam axial displacement and beam transverse displacement consist of bending components and shearing components. The assum...

متن کامل

DNA-Protein Cooperative Binding through Long-Range Elastic Coupling

Cooperativity plays an important role in the action of proteins bound to DNA. A simple, mechanical mechanism for cooperativity, in the form of a tension-mediated interaction between proteins bound to DNA at two different locations, is proposed. These proteins are not in direct physical contact. DNA segments intercalating bound proteins are modeled as a Worm-Like Chain, which is free to deform i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010